Title : Algorithms and Complexity
Author : Herbert S. Wilf,
University of Pennsylvania,
Philadelphia.
BOOK Length : 139 pages
BOOK File Format : PDF
BOOK Language : English
BOOK Description :
Table of Content :
- Chapter - 1 : Mathematical Preliminaries
1.1 : Orders of magnitude
1.2 : Positional number systems
1.3 : Manipulations with series
1.4 : Recurrence relations
1.5 : Counting
1.6 : Graphs
- Chapter - 2 : Recursive Algorithms
2.1 : Introduction
2.2 : Quick sort
2.3 : Recursive graph algorithms
2.4 : Fast matrix multiplication
2.5 : The discrete Fourier transform
2.6 : Applications of the FFT
2.7 : Review
- Chapter - 3 : The Network Flow Problem
3.1 : Introduction
3.2 : Algorithms for the network flow problem
3.3 : The algorithm of Ford and Fulkerson
3.4 : The max-flow min-cut theorem
3.5 : The complexity of the Ford-Fulkerson algorithm
3.6 : Layered networks
3.7 : The MPM Algorithm
3.8 : Applications of network flow
- Chapter - 4 : Algorithms in the Theory of Numbers
4.1 : Preliminaries
4.2 : The greatest common divisor
4.3 : The extended Euclidean algorithm
4.4 : Primality testing
4.5 : Interlude: the ring of integers modulo n
4.6 : Pseudo primality tests
4.7 : Proof of goodness of the strong pseudo primality test
4.8 : Factoring and cryptography
4.9 : Factoring large integers
4.10 : Proving primality
- Chapter - 5: NP-completeness
5.1 : Introduction
5.2 : Turing machines
5.3 : Cook's theorem
5.4 : Some other NP-complete problems
5.5 : Half a loaf .
5.6 : Backtracking(I): independent sets
5.7 : Backtracking (II): graph coloring
5.8 : Approximate algorithms for hard problems
- Click below to free download Book :
HOW TO DOWNLOAD ?
- Click on the download link.
- Wait for 5 seconds and then click on as shown in below 1st type of visual button.
No comments:
Post a Comment